Mantle Dynamics in Mars and Venus: Influence of an Immobile Lithosphere on ThreeDimensional Mantle Convection
نویسنده
چکیده
Numerical calculations of fully three-dimensional convection in constant viscosity, compressible spherical shells •re interpreted in terms of possible convective motions in the mantles of Venus mad Mars. The shells are heated both internally and from below to account for radiogenic heating, secular cooling, and heat flow from the core. The lower boundary of each of the shells is isothermal and shear stress free, as appropriate to the interface between a mantle and a liquid outer core. The upper boundary of each of the shells is rigid and isothermal, as appropriate to the base of a thick immobile lithosphere. Calculations with shear stress-free upper boundaries are also carried out to assess the role of the rigid surface condition. The ratio of the inner radius of each shell to its outer radius is in accordance with possible core sizes in both Venus and Mars. A calculation is also carried out for a Mars model with a small core to simulate mantle
منابع مشابه
The influence of mantle melting on the evolution of Mars
We present a parameterized convection model of Mars by incorporating a new heat-flow scaling law for stagnant-lid convection, to better understand how the evolution of Mars may be affected by mantle melting. Melting in the mantle during convection leads to the formation of a compositionally buoyant lithosphere, which may also be intrinsically more viscous by dehydration. The consequences of the...
متن کاملMantle Convection with a Brittle Lithosphere: Thoughts on the Global Tectonic Styles of the Earth and Venus
Plates are an integral part of the convection system in the fluid mantle, but plate boundaries are the product of brittle faulting and plate motions are strongly influenced by the existence of such faults. The conditions for plate tectonics are studied by considering brittle behaviour, using Byerlee’s law to limit the maximum stress in the lithosphere, in a mantle convection model with temperat...
متن کاملGeological Evolution of Venus: Rises, Plains, Plumes, and Plateaus
Crustal plateaus and volcanic rises, major physiographic features on Venus, both formed over mantle plumes. Crustal plateaus were produced by large degrees of plume melting beneath thin lithosphere. The oldest tectonic features in crustal plateaus are ribbon-like troughs indicating early uplift and tensile stretching; their shallow depths suggest that surface temperature there was higher in the...
متن کاملA mechanism for episodic subduction on Venus
We propose a mechanism previously developed as a hypothetical cause of the initiation of subduction in the Earth's mantle, to describe a situation where such subduction may occur transiently, at irregular intervals of time. It has been suggested that tectonics on Venus may be described by such a scenario. In our model, a subduction event is followed by resumption of high Rayleigh number mantle ...
متن کاملLow-degree mantle convection with strongly temperature- and depth-dependent viscosity in a three-dimensional spherical shell
A series of numerical simulations of thermal convection of Boussinesq fluid with infinite Prandtl number, with Rayleigh number 10, and with the strongly temperatureand depthdependent viscosity in a three-dimensional spherical shell is carried out to study the mantle convection of singleplate terrestrial planets like Venus or Mars without an Earth-like plate tectonics. The strongly temperature-d...
متن کامل